Fluorescence recovery after photobleaching: the case of anomalous diffusion.

نویسندگان

  • Ariel Lubelski
  • Joseph Klafter
چکیده

The method of FRAP (fluorescence recovery after photobleaching), which has been broadly used to measure lateral mobility of fluorescent-labeled molecules in cell membranes, is formulated here in terms of continuous time random walks (CTRWs), which offer both analytical expressions and a scheme for numerical simulations. We propose an approach based on the CTRW and the corresponding fractional diffusion equation (FDE) to analyze FRAP results in the presence of anomalous subdiffusion. The FDE generalizes the simple diffusive picture, which has been applied to FRAP when assuming regular diffusion, to account for subdiffusion. We use a subordination relationship between the solutions of the fractional and normal diffusion equations to fit FRAP recovery curves obtained from CTRW simulations, and compare the fits to the commonly used approach based on the simple diffusion equation with a time dependent diffusion coefficient (TDDC). The CTRW and TDDC describe two different dynamical schemes, and although the CTRW formalism appears to be more complicated, it provides a physical description that underlies anomalous lateral diffusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane bound protein diffusion viewed by fluorescence recovery after bleaching experiments : models analysis

Membrane bound protein diffusion viewed by fluorescence recovery after bleaching experiments : models analysis. Abstract Diffusion processes in biological membranes are of interest to understand the macromolecular organisation and function of several molecules. Fluorescence Recovery After Photobleaching (FRAP) has been widely used as a method to analyse this processes using classical Brownian d...

متن کامل

Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multiphoton excited cross-linking.

We demonstrate microscale spatial and chemical control of diffusion within protein matrixes created through the use of nonlinear multiphoton excited photochemistry. The mobility of fluorescent dyes of different mass and composition within controlled cross-linked environments has been measured using two-photon excited fluorescence recovery after photobleaching (FRAP). The diffusion times for sev...

متن کامل

Diffusion of alpha-chymotrypsin in solution-crowded media. A fluorescence recovery after photobleaching study.

Fluorescence recovery after photobleaching (FRAP) is one of the most powerful and used techniques to study diffusion processes of macromolecules in membranes or in bulk. Here, we study the diffusion of alpha-chymotrypsin in different crowded (Dextran) in vitro solutions using a confocal laser scanning microscope. In the considered experimental conditions, confocal FRAP images could be analyzed ...

متن کامل

A reaction-subdiffusion model of fluorescence recovery after photobleaching (FRAP)

Anomalous diffusion, in particular subdiffusion, is frequently invoked as a mechanism of motion in dense biological media, and may have a significant impact on the kinetics of binding/unbinding events at the cellular level. In this work we incorporate anomalous diffusion in a previously developed model for FRAP experiments. Our particular implementation of subdiffusive transport is based on a c...

متن کامل

Translational Diffusion of Macromolecule-sized Solutes in Cytoplasm and Nucleus

Fluorescence recovery after photobleaching (FRAP) was used to quantify the translational diffusion of microinjected FITC-dextrans and Ficolls in the cytoplasm and nucleus of MDCK epithelial cells and Swiss 3T3 fibroblasts. Absolute diffusion coefficients (D) were measured using a microsecond-resolution FRAP apparatus and solution standards. In aqueous media (viscosity 1 cP), D for the FITC-dext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 94 12  شماره 

صفحات  -

تاریخ انتشار 2008